Current Treatments
BETASERON® (interferon beta-1b) is indicated for the treatment of relapsing forms of multiple sclerosis to reduce the frequency of clinical exacerbations. Patients with multiple sclerosis in whom efficacy has been demonstrated include patients who have experienced a first clinical episode and have MRI features consistent with multiple sclerosis

AVONEX® (Interferon beta-1a) is a 166 amino acid glycoprotein with a predicted molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of AVONEX® is identical to that of natural human interferon beta.

COPAXONE is the brand name for glatiramer acetate (formerly known as copolymer-1). Glatiramer acetate, the active ingredient of COPAXONE, consists of the acetate salts of synthetic polypeptides, containing four naturally occurring amino acids: L-glutamic acid, L-alanine, L-tyrosine, and L-lysine with an average molar fraction of 0.141, 0.427, 0.095, and 0.338, respectively. The average molecular weight of glatiramer acetate is 5,000 – 9,000 daltons. Glatiramer acetate is identified by specific antibodies.

Rebif® (interferon beta-1a) is a purified 166 amino acid glycoprotein with a molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of Rebif® is identical to that of natural fibroblast derived human interferon beta. Natural interferon beta and interferon beta-1a (Rebif®) are glycosylated with each containing a single N-linked complex carbohydrate moiety.

Tysabri is a monoclonal antibody that affects the actions of the body's immune system. Monoclonal antibodies are made to target and destroy only certain cells in the body. This may help to protect healthy cells from damage. Tysabri is used to treat relapsing forms of multiple sclerosis.
Gilenya™ is a new class of medication called a phingosine 1-phosphate receptormodulator, which is thought to act by retaining certain white blood cells (lympohcytes) in the lymph nodes, thereby preventing those cells from crossing the blood-brain barrier into the central nervous system (CNS). Preventing the entry of these cells into the CNS reduces inflammatory damage to nerve cells.


Early Symptoms
The most common early symptoms of MS include:
* Tingling * Numbness
* Loss of balance
* Weakness in one or more limbs
* Blurred or double vision

Less common symptoms of MS may include
* Slurred speech
* Sudden onset of paralysis
* Lack of coordination
* Cognitive difficulties
Listed above, the early symptoms. I tend to be a poster child for these. The symptoms that occur later on are too numerous just to list. There will be a link included that will get you to a site where these symptoms are listed and explained. Keep in mind that someone may have some of these or many of these, there is no way to tell.
Multiple sclerosis statistics show that approximately 250,000 to 350,000 people in the United States have been diagnosed with this disease. The life expectancy for people with multiple sclerosis is nearly the same as for those without MS. Because of this, multiple sclerosis statistics place the annual cost of MS in the United States in the billions of dollars. MS is five times more prevalent in temperate climates -- such as those found in the northern United States, Canada, and Europe -- than in tropical regions. Furthermore, the age of 15 seems to be significant in terms of risk for developing the disease. Some studies indicate that a person moving from a high-risk (temperate) to a low-risk (tropical) area before the age of 15 tends to adopt the risk (in this case, low) of the new area and vice versa. Other studies suggest that people moving after age 15 maintain the risk of the area where they grew up.

Saturday, October 10, 2009

What are the unique properties of all stem cells?



Stem cells differ from other kinds of cells in the body. All stem cells—regardless of their source—have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.

Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells—which do not normally replicate themselves—stem cells may replicate many times, or proliferate. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.

Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal:

why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most non-embryonic stem cells cannot; and
what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal?
Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. Such information would also enable scientists to grow embryonic and non-embryonic stem cells more efficiently in the laboratory.

The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. It has taken scientists many years of trial and error to learn to derive and maintain stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took two decades to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed. Such information is critical for scientists to be able to grow large numbers of unspecialized stem cells in the laboratory for further experimentation.

Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. For example, a stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell), and it cannot carry oxygen molecules through the bloodstream (like a red blood cell). However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.

Stem cells can give rise to specialized cells. When unspecialized stem cells give rise to specialized cells, the process is called differentiation. While differentiating, the cell usually goes through several stages, becoming more specialized at each step. Scientists are just beginning to understand the signals inside and outside cells that trigger each stem of the differentiation process. The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all cellular structures and functions. The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment. The interaction of signals during differentiation causes the cell's DNA to acquire epigenetic marks that restrict DNA expression in the cell and can be passed on through cell division.

Many questions about stem cell differentiation remain. For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions may lead scientists to find new ways to control stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes such as cell-based therapies or drug screening.

Adult stem cells typically generate the cell types of the tissue in which they reside. For example, a blood-forming adult stem cell in the bone marrow normally gives rise to the many types of blood cells. It is generally accepted that a blood-forming cell in the bone marrow—which is called a hematopoietic stem cell—cannot give rise to the cells of a very different tissue, such as nerve cells in the brain. Experiments over the last several years have purported to show that stem cells from one tissue may give rise to cell types of a completely different tissue. This remains an area of great debate within the research community. This controversy demonstrates the challenges of studying adult stem cells and suggests that additional research using adult stem cells is necessary to understand their full potential as future therapies.

No comments:

Blog Archive

About Me

My photo
North Grafton, Massachusetts, United States
Well-educated, disabled at this point with Multiple Sclerosis. I am very glad that I was able to do the things that I have been able to do over the years. had to change the picture, this one's more realistic.