Current Treatments
BETASERON® (interferon beta-1b) is indicated for the treatment of relapsing forms of multiple sclerosis to reduce the frequency of clinical exacerbations. Patients with multiple sclerosis in whom efficacy has been demonstrated include patients who have experienced a first clinical episode and have MRI features consistent with multiple sclerosis

AVONEX® (Interferon beta-1a) is a 166 amino acid glycoprotein with a predicted molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of AVONEX® is identical to that of natural human interferon beta.

COPAXONE is the brand name for glatiramer acetate (formerly known as copolymer-1). Glatiramer acetate, the active ingredient of COPAXONE, consists of the acetate salts of synthetic polypeptides, containing four naturally occurring amino acids: L-glutamic acid, L-alanine, L-tyrosine, and L-lysine with an average molar fraction of 0.141, 0.427, 0.095, and 0.338, respectively. The average molecular weight of glatiramer acetate is 5,000 – 9,000 daltons. Glatiramer acetate is identified by specific antibodies.

Rebif® (interferon beta-1a) is a purified 166 amino acid glycoprotein with a molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of Rebif® is identical to that of natural fibroblast derived human interferon beta. Natural interferon beta and interferon beta-1a (Rebif®) are glycosylated with each containing a single N-linked complex carbohydrate moiety.

Tysabri is a monoclonal antibody that affects the actions of the body's immune system. Monoclonal antibodies are made to target and destroy only certain cells in the body. This may help to protect healthy cells from damage. Tysabri is used to treat relapsing forms of multiple sclerosis.
Gilenya™ is a new class of medication called a phingosine 1-phosphate receptormodulator, which is thought to act by retaining certain white blood cells (lympohcytes) in the lymph nodes, thereby preventing those cells from crossing the blood-brain barrier into the central nervous system (CNS). Preventing the entry of these cells into the CNS reduces inflammatory damage to nerve cells.


Early Symptoms
The most common early symptoms of MS include:
* Tingling * Numbness
* Loss of balance
* Weakness in one or more limbs
* Blurred or double vision

Less common symptoms of MS may include
* Slurred speech
* Sudden onset of paralysis
* Lack of coordination
* Cognitive difficulties
Listed above, the early symptoms. I tend to be a poster child for these. The symptoms that occur later on are too numerous just to list. There will be a link included that will get you to a site where these symptoms are listed and explained. Keep in mind that someone may have some of these or many of these, there is no way to tell.
Multiple sclerosis statistics show that approximately 250,000 to 350,000 people in the United States have been diagnosed with this disease. The life expectancy for people with multiple sclerosis is nearly the same as for those without MS. Because of this, multiple sclerosis statistics place the annual cost of MS in the United States in the billions of dollars. MS is five times more prevalent in temperate climates -- such as those found in the northern United States, Canada, and Europe -- than in tropical regions. Furthermore, the age of 15 seems to be significant in terms of risk for developing the disease. Some studies indicate that a person moving from a high-risk (temperate) to a low-risk (tropical) area before the age of 15 tends to adopt the risk (in this case, low) of the new area and vice versa. Other studies suggest that people moving after age 15 maintain the risk of the area where they grew up.

Wednesday, October 14, 2009

VI. What are induced pluripotent stem cells?


Induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem cell–like state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute to many different tissues when injected into mouse embryos at a very early stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers.

Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatments for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies. In any case, this breakthrough discovery has created a powerful new way to "de-differentiate" cells whose developmental fates had been previously assumed to be determined. In addition, tissues derived from iPSCs will be a nearly identical match to the cell donor and thus probably avoid rejection by the immune system. The iPSC strategy creates pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

No comments:

Blog Archive

About Me

My photo
North Grafton, Massachusetts, United States
Well-educated, disabled at this point with Multiple Sclerosis. I am very glad that I was able to do the things that I have been able to do over the years. had to change the picture, this one's more realistic.