Current Treatments
BETASERON® (interferon beta-1b) is indicated for the treatment of relapsing forms of multiple sclerosis to reduce the frequency of clinical exacerbations. Patients with multiple sclerosis in whom efficacy has been demonstrated include patients who have experienced a first clinical episode and have MRI features consistent with multiple sclerosis

AVONEX® (Interferon beta-1a) is a 166 amino acid glycoprotein with a predicted molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of AVONEX® is identical to that of natural human interferon beta.

COPAXONE is the brand name for glatiramer acetate (formerly known as copolymer-1). Glatiramer acetate, the active ingredient of COPAXONE, consists of the acetate salts of synthetic polypeptides, containing four naturally occurring amino acids: L-glutamic acid, L-alanine, L-tyrosine, and L-lysine with an average molar fraction of 0.141, 0.427, 0.095, and 0.338, respectively. The average molecular weight of glatiramer acetate is 5,000 – 9,000 daltons. Glatiramer acetate is identified by specific antibodies.

Rebif® (interferon beta-1a) is a purified 166 amino acid glycoprotein with a molecular weight of approximately 22,500 daltons. It is produced by recombinant DNA technology using genetically engineered Chinese Hamster Ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of Rebif® is identical to that of natural fibroblast derived human interferon beta. Natural interferon beta and interferon beta-1a (Rebif®) are glycosylated with each containing a single N-linked complex carbohydrate moiety.

Tysabri is a monoclonal antibody that affects the actions of the body's immune system. Monoclonal antibodies are made to target and destroy only certain cells in the body. This may help to protect healthy cells from damage. Tysabri is used to treat relapsing forms of multiple sclerosis.
Gilenya™ is a new class of medication called a phingosine 1-phosphate receptormodulator, which is thought to act by retaining certain white blood cells (lympohcytes) in the lymph nodes, thereby preventing those cells from crossing the blood-brain barrier into the central nervous system (CNS). Preventing the entry of these cells into the CNS reduces inflammatory damage to nerve cells.


Early Symptoms
The most common early symptoms of MS include:
* Tingling * Numbness
* Loss of balance
* Weakness in one or more limbs
* Blurred or double vision

Less common symptoms of MS may include
* Slurred speech
* Sudden onset of paralysis
* Lack of coordination
* Cognitive difficulties
Listed above, the early symptoms. I tend to be a poster child for these. The symptoms that occur later on are too numerous just to list. There will be a link included that will get you to a site where these symptoms are listed and explained. Keep in mind that someone may have some of these or many of these, there is no way to tell.
Multiple sclerosis statistics show that approximately 250,000 to 350,000 people in the United States have been diagnosed with this disease. The life expectancy for people with multiple sclerosis is nearly the same as for those without MS. Because of this, multiple sclerosis statistics place the annual cost of MS in the United States in the billions of dollars. MS is five times more prevalent in temperate climates -- such as those found in the northern United States, Canada, and Europe -- than in tropical regions. Furthermore, the age of 15 seems to be significant in terms of risk for developing the disease. Some studies indicate that a person moving from a high-risk (temperate) to a low-risk (tropical) area before the age of 15 tends to adopt the risk (in this case, low) of the new area and vice versa. Other studies suggest that people moving after age 15 maintain the risk of the area where they grew up.

Wednesday, August 24, 2011

Why Research Funding is Important to Me

Dancing in my spring ballet recital was a tradition growing up. But, in my junior year of high school, that tradition unexpectedly came to a halt. At 16 years old, I was suddenly unable to walk, which I later discovered was a direct result of my multiple sclerosis. After hearing my diagnosis, dancing was no longer my focus; the only thing I could concentrate on was getting back on my feet.

In time, my ability to walk was restored. Regaining strength and mobility was possible for me and for so many others because of years of research that occurred previous to my diagnosis in 2006. Now at 22 and still active, I wonder where I would be without the extensive research, the innovative drugs, and the dedicated scientists who work every day for more effective treatments and ultimately to cure MS.

I am not letting my diagnosis stop me—I will pursue a career and hopefully raise a family. Like so many others living with MS, though, I would love to not constantly worry about what tomorrow will bring. As thankful as I am for the treatments people living with MS now have and the progress we have made, I still want a cure. I still dream of a world free of MS. Research is the only road to a cure.

Please help me maintain my hope for a cure by asking Congress to continue to provide research funding for the National Institutes of Health (NIH), one of the premier national institutions that conducts MS research. As Congress moves forward preparing the Fiscal Year 2012 budget, click here to email your Members of Congress and let them know that NIH research is essential to maintaining hope for all of those living with MS by advancing the search for a cure. Together, we can make a difference.

No comments:

About Me

My photo
North Grafton, Massachusetts, United States
Well-educated, disabled at this point with Multiple Sclerosis. I am very glad that I was able to do the things that I have been able to do over the years. had to change the picture, this one's more realistic.